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Recent studies have revealed that riddled fractal sets, sets whose conventionally defined fractal dimen-
sions are integers, occur commonly in chaotic dynamical systems. We demonstrate that these exotic
fractal sets exhibit a sign-singular scaling behavior with nontrivial scaling exponents. The exponents
may then be used to characterize the sets. Numerical examples using both a low-dimensional map and a

coupled map lattice are given.
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Fat fractals, fractal sets with positive Le-
besgue measures, are found in chaotic dynamical systems.
A known example of the fat fractal sets is the set of pa-
rameter values for which the one-dimensional logistic
map exhibits a chaotic attractor [1-3]. Due to the posi-
tive Lebesgue measure, the box-counting dimension d
for a fat fractal is an integer [3]. To resolve the predica-
ment of assigning integer dimensions for apparently frac-
tal sets and also to better characterize fat fractals, the
concept of exterior dimension d., was introduced [3]. An
appealing aspect of the exterior dimension is that it can
be related to the uncertainty exponent a [4,3] by
d.,=D —a, where D is the phase-space dimension. The
uncertainty exponent, besides having the advantage of
easy numerical access, also has clear physical meaning: it
characterizes the scaling behavior of the probability of
generating completely different asymptotic behavior of
the system upon small perturbations in initial conditions
or parameters. Specifically, let x, (p,) be a randomly
chosen initial condition (or a set of parameter values) that
leads to one type of asymptotic behavior. Then P(€), the
probability that the perturbed initial condition x,+e€ (or
the perturbed set of parameter values p,+e¢€) leads to a
different asymptotic behavior, decreases as the perturba-
tion € decreases in magnitude, and typically scales with €
as P(e)~€* If 0=a<1, improving the precision with
which initial conditions or parameters are specified does
not result in an equivalent improvement in the ability to
predict the asymptotic behavior correctly [4]. For fat
fractal sets with 0 <a <1 (such as the chaotic parameter
set in the logistic map example), the exterior dimension
assumes a fractional value, which is well suited for quan-
tifying fat fractals.
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Recently, an extreme type of fat fractal sets has been
identified in chaotic systems with a simple class of sym-
metry. These sets are the riddled basins [S—7] and the
riddled parameter sets [8]. The physical manifestation of
such sets is that for an initial condition or a parameter
value that leads to a chaotic attractor, there are initial
conditions or parameter values arbitrarily nearby that
lead to other attractors. Thus, the basins of attraction or
the parameter sets for the chaotic attractor are riddled
with holes that belong to basins or parameter sets of the
other attractors. The uncertainty exponents computed
for riddled basins or riddled parameter sets are usually
very close to zero and are in fact indistinguishable from
zero in numerical computations [8]. As such, significant
error occurs if one attempts to predict the asymptotic at-
tractor for a given initial condition or a parameter value
that is uncertain, and the situation does not improve even
if one reduces the uncertainty over many orders of mag-
nitude [5-8]. A direct consequence, from the viewpoint
of characterizing riddled basins or riddled parameter sets,
is that the exterior dimensions d., for these fat fractal
sets approach to integer values for a=O0 (since
d,=D —a).

In this paper, we propose instead to use the so-called
cancellation exponent k to characterize riddled fractal
sets with integer exterior dimensions. The cancellation
exponent k was introduced [9] recently to characterize
physical quantities that change sign from positive to neg-
ative and vice versa on arbitrarily small scales. Physical
quantities with nonzero cancellation exponent are said to
exhibit the sign-singular scaling behavior [9]. Here, for
riddled fractal sets, we demonstrate that a fundamental
physical quantity in chaos theory, the maximum
Lyapunov exponent A, exhibits the sign-singular scaling
behavior [10]. More importantly, the cancellation ex-
ponent is found to possess different fractional values for
different riddled fractal sets and, hence, it is suitable for
distinguishing and characterizing riddled fractal sets with
a=0 (or d, =integer).
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Mathematically, a signed measure that is defined on a
set can take on either positive or negative values. This is
in contrast to the conventional probability measure of a
set X, which is countably additive and assigns only posi-
tive value or zero to any subset of X. To define a signed-
measure u, consider a finite one-dimensional interval I.
Let A €1 be a subinterval such that u( 4)70. The mea-
sure p is sign singular if, for any such interval 4 (no
matter how small), there is an interval B contained in A4
such that u(B) has the opposite sign from u( 4). Hence,
the measure p changes sign on arbitrarily small scales.
To quantify signed measures, a cancellation exponent
was introduced in Ref. [9] as the following. Divide the
one-dimensional interval I into N (€) disjoint subintervals
I;, each of length e  Examine the quantity
Q(e)=3N|u(I;)]. When the number of subintervals
N (e) is small, or equivalently when € is large, we expect
Q(€) to be small because each of the u(I;) is small due to
the high degree of cancellation within a subinterval I;.
As N (€) increases, or as € gets smaller, the cancellation
of positive and negative contributions of u in each subin-
terval I, is reduced, thereby causing the sum Q(¢€) to in-
crease. In general, (}(e) scales with € as Q(e)~(1/€)%,
where k2 0 is the cancellation exponent. More rigorous-
ly, k can be defined as [9]

(1)

Thus, a larger value of k corresponds to a higher degree
of cancellation of u, indicating that the measure changes
sign on arbitrarily small scales in a significant way. It
can be shown that for probability measures or for signed
measures with a smooth bounded probability density,
«=0 [9]. In order to have a nontrivial «, oscillation in
sign of u must occur on arbitrarily small scales. It was
demonstrated in Ref. [9] that sign-singular measures with
k>0 indeed occur in physical systems such as the mag-
netic field in fast magnetic dynamos, and velocity deriva-
tives and vorticities in high-Reynolds-number fluid tur-
bulence.

To demonstrate that the sign-singular scaling behavior
occurs in chaotic systems possessing riddled fat fractal
sets, we have carried out a series of numerical experi-
ments for both low- and high-dimensional systems. Our
first numerical example is a two-dimensional map that
has been shown to exhibit riddled basins [6]. The map is
defined in the region given by 0=x =<1 and y 20. For
0=y <1, the map is given by

(1/a)x, for x,<a
Xn+17

(1/b)(x,—a) for x,>a , )
¢y, for x,<a
Yn+17 \dy, for x,>a , 3)

where 0<a <1, b=1—a, 0<d <1, and ¢ > 1. Thus the
interval I, =[x,y|0<x <1,y =0] is invariant under itera-
tions of the map and contains a chaotic attractor with a
positive Lyapunov exponent A 1,4 Inl/a +b Inl/b.

The y dynamics for 0 <y <1 involves both expansion and
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contraction. As a consequence, some initial conditions in
the unit square asymptote to the chaotic attractor in I,
while some other escape the unit square when y, > 1. For
y=1, we assume there is a stable fixed point at
(X, )y >1,0<X <1). In this case, the map can be writ-
ten as

xn+1=—“f+e—}"‘(xn —X),
2 4)
yn+l=j’7+e y(yn—.v)’
where we assume A, >0 and A, >0 so that x, —»X and
Yn—y as n—o. We also assume that A, <A, and,
hence, for trajectories with y, > 1, the asymptotic attrac-
tor has a maximum Lyapunov exponent equal to —A,. It
has been shown [6] that when a <a, =|Ind| /(Inc + [Ind]),
the basin of the chaotic attractor in I, is riddled: for
every initial condition in the unit square that asymptotes
to this attractor, there are initial conditions arbitrarily
nearby that asymptote to the fixed-point attractor at
(X,y). We choose a =0.25, d =0.8, ¢ =1.8 (so that
a.~0.2752>a, and )».,OzO. 5623), and A, =0.6. The

phase-space structure of the map is quite complicated.
This can be seen by computing the basins of the attrac-
tion for the two attractors. Figure 1(a) shows the basin of

(a)
1 —

08

0.6 -
>
0.4+

0.2 -

0 4

0.06 +

0.04

0.02-

(0] ' ' |
0O 0.02 0.04 0.06 0.08 0.1
X

FIG. 1. Basin of the y =0 chaotic attractor for the two-
dimensional map (2)-(4) at the following set of parameter
values: a =0.25, d =0.8, and ¢ =1.8. (a) In the unit square
0<x,y<1. (b) A blowup of part of (a) in the region
0=x,y=<0.1.



53 CHARACTERIZING RIDDLED FRACTAL SETS

the y =0 chaotic attractor (black dots) in the relevant
two-dimensional  phase-space region defined by
0=<x,y<1. The basin of the attractor at (X,y) is
represented by blank regions in the plot. It can be seen
that for every black dot, there are blank regions arbitrari-
ly nearby, which is typical of a riddled phase space. This
behavior persists regardless of the phase-space scale ex-
amined, as shown in Fig. 1(b), the basin of the y =0
chaotic attractor in the smaller region defined by
0=x,y <0.1. The uncertainty exponent in this case is
a=~0.003 [6]. The exterior dimension for the set of initial
conditions that asymptote to the chaotic attractor in I is
d.,=2—a=1.997, which is very close to 2, and there-
fore, d., is not a good characterizing quantity for the rid-
dled fractal set that is the basin of attraction for the y =0
attractor.

To examine the sign scaling behavior of the Lyapunov
exponent, we choose 2X 10° initial conditions uniformly
distributed in the interval I=[x,y|0<x <1,y =0.01].
Trajectories that have originated from these initial condi-
tions have Lyapunov exponents of either k=k,0 or —A,.

Figure 2(a) shows A versus x, which exhibits a change in
the sign of A that apparently persists on arbitrarily small
scales. We examine fluctuations of A defined by
AA=A—AX for each initial condition, where X is the aver-
age A value in the interval. We divide the interval I into
N (€) subintervals with length €, where N(e)=[1/€] is
the integer part of 1/€. For 2X 10° initial conditions in I,
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FIG. 2. (a) Lyapunov exponent A versus x at y =0.01 for the
two-dimensional map (2)—(4). The parameter setting is the same
as in Fig. 1. The uncertainty exponent is ~0.003. (b) InQ(¢)
vs Inl/e, which gives the cancellation exponent
k=0.097+0.003.
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there are M =[2X10°%/N (€)] points in each subinterval
I; [i=1,...,N(e)]. Summing AA values over all M
points, we get the quantity AA([;). The sum
Q(e)=3M9|AM,)| can then be computed. Figure 2(b)
shows, on a logarithmic scale, the sum versus 1/€ for
e #<e<e 3, which is fitted by a straight line with slope
£=0.0971+0.003 at a 95% confidence level. This clearly
indicates a nonzero cancellation exponent and conse-
quently sign-singular scaling behavior in AA. Note that
the sum starts to deviate from the fitted line at
Inl/e=7.5. This is a numerical artifact, because, as the
interval I; gets smaller, the number of points contained in
each interval also decreases (the total number of points is
fixed). Consequently, the degree of cancellation in the
whole interval I increases more slowly as even smaller in-
tervals I; are examined, thereby causing the sum to devi-
ate downwards from the fitted line. At small values of
Inl/€ in Fig. 2(b), statistical fluctuations of the sum Q(¢)
become large. The reason is that fewer intervals I; are in-
volved in the sum as the size of each interval increases.
Despite these fluctuations and the deviation of the sum
from the fitted line at small values of €, the scaling
behavior of the sum with € is robust, and the extraction
of the cancellation exponent from the sum is reliable.

Our second numerical example is the following system
of N globally coupled circle maps [11,12],
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0 1.57 3.14 471 628
6(8)

x = 0.504 + 0.005

0 2 4 6 8 10
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FIG. 3. {a) The maximum Lyapunov exponent A vs 6 at an
arbitrary site for the globally coupled circle map lattice Eq. (5)
for the following set of parameter values: k =4, w=2, and
o=1.288. The uncertainty exponent cannot be distinguished
from zero in this case. (b) InQ(€) vs Inl /€, which gives the can-
cellation exponent k =0.504+0.005.
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N
0, . 1()= |w+6,(i)+k sinOn(i)+% 3 sin6, (j) | ,
j=1

mod(2w), i=1,...,N, (5)

where i and n denote discrete spatial site and time, re-
spectively, @ and a are the parameters of the single circle
map, and o is the coupling strength. It has been demon-
strated that, in substantial regions of the parameter
space, this system exhibits multiple chaotic and non-
chaotic attractors in the phase space [12]. The sets of ini-
tial conditions in the basins of the chaotic attractors are
riddled fat fractals with a near-zero uncertainty exponent
(or d,=D). Figure 3(a) shows the maximum Lyapunov
exponent versus 6 on an arbitrary spatial site for N =20,
k =4, =2, and 0 =1.288. The uncertainty exponent is
a=0.00047+0.002 82, a value that cannot be dis-
tinguished from zero [12]. Figure 3(b) shows the sum
Q(¢€), computed using AA values at 2 X 10° uniformly dis-
tributed € points in Fig. 3(a), versus 1/€ on a logarithmic
scale. The sign-singular scaling behavior is robust in this
case, and the cancellation exponent is k=0.504+0.005.
This value of « is larger than the cancellation exponent
computed in Fig. 2(b) for the two-dimensional map
(2)—(4). Thus, the degree of the fine-scale cancellation in
AA for the coupled circle map lattice (5) is much higher
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than that for the two-dimensional map (2)-(4), indicating
much more significant fine-scale fluctuations of the
Lyapunov exponent for the former case [compare Fig.
3(a) to Fig. 2(a)]. The cancellation exponent, therefore,
correctly characterizes and differentiates fine-scale proper-
ties of the riddled fractal sets with approximately integer
exterior dimensions.

We have also examined other cases. These include (i)
various different system sizes and parameter values of the
coupled circle map lattice, (ii) the globally coupled
Hénon map lattice, and (iii) the diffusively coupled logis-
tic map lattice. For all riddled fractal sets with approxi-
mately zero uncertainty exponents in these systems, the
sign-singular scaling behavior gives nonzero cancellation
exponents. The existence of nontrivial cancellation ex-
ponents in all these systems suggests that sign-singular
scaling behavior may be a common feature for riddled
fractal sets with near integer exterior dimensions. The
fact that different systems exhibit different cancellation
exponents provides another way to characterize these ex-
otic fractal sets.
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